























The ISWI Complex of T. brucei

FIGURE 8. T. bruceilISWI and its partners colocalize at the Pol I-transcribed rDNA and procyclin loci in bloodstream form T. brucei.A, schematic of a
typical rDNA transcription unit, with genes indicated with black boxes, and the rDNA promoter indicated with a black flag. Regions analyzed by qPCR are
indicated with letters. B, colocalization of TbISWI and its partners at the rDNA locus. Chromatin from T. brucei ISWI-HA, NLP-HA, FYRP-HA, or WT cells was
immunoprecipitated with an anti-HA antibody. Chromatin from parental cells was immunoprecipitated with an anti-RCCP antibody, and rabbit preimmune
serum (P/) was used as a negative control. The genomic regions analyzed are indicated in the schematic and listed above the graphs. Results are presented as
the amount immunoprecipitated (percentage of input (% IP)) after subtraction of the no antibody control. Results shown are the mean of three independent
experiments with the S.D. indicated with error bars, apart from NLP. Here the results are from one representative ChIP experiment because similar data have
been published previously by Narayanan et al. (55). C, a diagram of the EP procyclin locus transcribed by multifunctional Pol I. A black flag depicts the procyclin
promoter, and letters indicate the regions that were analyzed using gPCR. D, different TbISWI partners colocalize at the procyclin locus. Inmunoprecipitated

chromatin at the procyclin genomic loci was analyzed as indicated in the legend for B. Regions analyzed are shown above the graphs.

TbISWI Interacts with Its Partners Forming the TbISWI Com-
plex (TbIC) in T. brucei—Is ISWI present in one or multiple
complexesin T. brucei? Typically, in different eukaryotes, ISW1
isa component of a number of functional ISWI complexes, with
discrete roles depending on the composition of the subunits (8,
10). We investigated whether the potential TbISWTI partners
identified through TAP affinity purification were indeed inter-
acting with TbISWI and with each other. We performed co-IP
experiments in PF cells that contained Myc-tagged TbISWIand
HA-tagged RCCP or FYRP proteins. Immunoprecipitation
with either anti-Myc or anti-HA monoclonal antibodies was
followed by Western blot analysis to determine whether other
potential ThISWI complex components were co-purified. (Fig.
3). We used an anti-Myc antibody to detect ThISWI-Myc (138
kDa), polyclonal anti-NLP antibody to detect NLP (107 kDa),
and anti-HA antibody to detect RCCP-HA and FYRP-HA (74
and 57 kDa, respectively). NLP, RCCP, and FYRP were all co-
purified when TbISWI was pulled down. We also found that
TbISWI and NLP co-purified when RCCP or FYRP were
immunoprecipitated.

Further co-IP experiments were performed in PF cells with
different combinations of tagged proteins, and it was shown
that when FYRP is pulled down, RCCP is co-purified, and vice
versa (Fig. 3). Co-IP experiments showed similar interactions
between TbISWI and its proposed partners in BF cells (Fig. 4).
These extensive co-IP experiments argue that there is at least
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one ISWI complex containing ThISWI, NLP, RCCP, and FYRP
and that all members of this complex interact with each other in
both BF and PF life cycle stages of T. brucei.

To elucidate whether TbISWI forms one complex or multi-
ple subcomplexes, TbISWI-PTP and its co-purified compo-
nents from the TAP affinity purification experiments were sep-
arated under nondenaturing conditions and silver-stained (Fig.
5A). Similarly, the same experiment was performed with TAP
affinity-purified NLP-PTP (Fig. 5B). The visible bands were
excised and analyzed by mass spectrometry. A predominant
major band was seen in both cases, corresponding to either
TbISWI or NLP complexed with each other and with RCCP.

FYRP was detected in both experiments, albeit below the
threshold score of 80, indicating weak association with this
complex. However, based on its score in the initial ThISWI
and NLP TAP tagging experiments and the extensive co-IP
experiments, we are confident that FYRP is a true member of
the TbISWI complex. Additional minor bands observed
below the main band contain different stoichiometries of
complex partners indicating possible different degradation
states of a single complex. These data therefore indicate that
there is a single major T. brucei ISWI complex (TbIC) (Fig.
5C). However, we cannot exclude the presence of additional
minor subcomplexes composed of just some of the ThISWI
complex subunits.
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Depletion of FYRP or RCCP Results in Derepression of Silent
VSG Expression Sites—We have previously established that
both ThISWI and NLP play a role in ES silencing (53, 55). We
investigated the role of RCCP and FYRP on ES control using a
BF T. brucei VSGT3-expressing reporter cell line where eGFP
had been inserted immediately downstream of the promoter of
the inactive VSG221 ES (53). RNAi was induced against RCCP,
resulting in a reduction in transcript levels to about 60% of
normal levels, with a simultaneous reduction in levels of protein
(Fig. 6). Only a minor reduction in cell growth was observed.
However, there was an observed 17-37-fold derepression of
eGFP in the silent VSG221 ES after 72 h as monitored in the
FL-1 channel using flow cytometry (Fig. 6C).

We performed a similar analysis of the role of FYRP (Fig. 7).
The FYRP transcript was reduced to 50% of normal levels after
24 h. FYRP protein knockdown was investigated using a cell line
with an HA-tagged copy of FYRP, which was knocked down to
undetectable levels after a 96-h induction of RNAI (Fig. 7E).
Here too, although the induction of RNAI resulted in only a
minor reduction in cell growth (Fig. 7B), there was 26 — 61-fold
derepression of the silent VSG221 ES.

Genomic Localization of the ThISWI Complex—The native
gels and the co-IP experiments suggested that there is a single
predominant TbISWI complex (TbIC) in T. brucei. However,
to investigate this further, we determined the genomic localiza-
tion of the four potential components using ChIP experiments.
ChIP was performed in different BF cell lines expressing either
HA-tagged TbISWI, HA-NLP, or HA-FYRP, using a monoclo-
nal anti-HA antibody. Multiple attempts of ChIP using HA
epitope-tagged RCCP proved unsuccessful, indicating a possi-
ble lack of accessibility of the HA epitope to antibodies when
the ISWI complex is in association with DNA. We therefore
used a rabbit polyclonal antibody against RCCP in the RCCP
ChIP experiments.

We first investigated the localization of the TbISWI complex
components at the RNA Pol I-transcribed rDNA loci (Fig. 84).
TbISWTI and NLP are relatively depleted within Pol I transcrip-
tion units but enriched at non-transcribed regions (53, 55). This
pattern of localization was also observed for RCCP and FYRP
(Fig. 8B). In the case of FYRP, the statistical significance of this
differential localization was extremely significant (p < 0.001)
(primer pairs a versus primer pairs b or primer pairs e versus
primer pairs b, ¢, or d). In the case of RCCP, although there was
atrend, this was not statistically significant. Similarly, at the Pol
I-transcribed procyclin loci (Fig. 8C), ThbISWI and NLP are rel-
atively enriched upstream compared with within the transcrip-
tion units (53, 55). This was also the case for both RCCP and
FYRP with a statistical significance of p = 0.01-0.05 (primer
pairs a versus primer pairs b or c) in both cases (Fig. 8D).

Pol II transcription units in T. brucei are polycistronic. Pol II
transcription initiates in SSRs, where two opposing transcrip-
tion units diverge, and terminates where they converge.
TbISWI was proposed to be enriched at these SSRs and partic-
ularly in the regions around divergent SSRs containing promot-
ers (54). ChIP experiments with ISWT are very difficult to per-
form, presumably as a consequence of the relatively low affinity
of this chromatin remodeler for DNA.
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TbISWI, NLP, RCCP, and FYRP appeared to bind regions
around different Pol IT SSRs (Fig. 9). In parallel, ChIP experi-
ments were also performed with histone H3, serving as a posi-
tive control for the ChIP procedure (result not shown). There
was possible colocalization of ISWI subunits at the SSR diver-
gent regions D1 and D2; however, these results were not statis-
tically significant. All members of the ThISWI complex associ-
ate with chromatin and show a trend of localizing to similar
genomic regions, which is statistically significant at Pol I loci.
All of these different experimental approaches that show all
TbIC components interacting and present at a variety of
genomic loci argue that there is a single predominant ISW1I
complex in T. brucei.

Discussion

In eukaryotes, the ISWI chromatin remodeler is typically
present in a variety of different complexes with distinct func-
tions, depending on exactly which subunits ISWT is partnered
up with. Here, we have characterized TbISWTI and its interact-
ing partners in T. brucei and provide evidence for a single major
ISWTI complex (TbIC) in both BF and PF T. brucei. Using a
number of different experimental methods, we show that all of
the TbIC subunits are expressed and interact with each other in
both trypanosome life cycle stages. The previously character-
ized nucleoplasmin-like protein NLP was found to be a member
of this TbIC complex. This unexpected discovery explains the
observation that knockdown of either TbISWI or NLP leads to
similar phenotypes, including the derepression of VSG ESs. In
addition, using TAP affinity purification with either TbISW1
or NLP, we identify two novel and previously uncharacter-
ized TbIC components: RCCP and FYRP. Neither of these
ISWI partners is a homologue of known ISWI partners in
other eukaryotes. However, both proteins contain amino
acid sequence motifs indicating a possible interaction with
chromatin.

The TbISWI-interacting RCCP protein contains four RCC1
protein motifs, which characterize the RCC1 superfamily of
proteins (66). The RCC1 family is a diverse group of proteins
which contain variable numbers of RCC1-like domains, with a
tertiary structure resembling a seven-bladed propeller (69).
RCC1 is the best characterized member of this family and is a
DNA-binding protein that regulates the onset of chromosome
condensation (70). RCC1 is localized to chromatin throughout
the cell cycle and is a guanine nucleotide exchange factor for
Ran (71-73). RCC1 binds nucleosomes, recruits Ran to the
chromatin, and activates Ran nucleotide exchange activity (72,
74). It therefore plays a central role in establishing the RanGTP
concentration gradient around the chromosome, which is key
for a number of processes to occur, including mitosis (75-77).
In this regard, it is interesting that it has been reported that in
Xenopus, ISWI is a RanGTP-dependent microtubule-associ-
ated protein required for chromosome segregation (78).
Although in T. brucei, knockdown of TbISWI and its subunits
leads to derepression of VSG ESs, we have not seen obvious
disruption of chromosome segregation.

In contrast, the TbISW1I-interacting protein FYRP is charac-
terized by a FYRC domain. FYRC protein motifs contain a phe-
nylalanine- and tyrosine-rich region that is poorly character-
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FIGURE 9. Location of different TbISWI partners at two different Pol Il convergent and divergent strand switch regions. A, schematic of different Pol Il
SSRs from chromosome 10 (convergent regions C2 and C3 and divergent regions D1 and D2). These regions were initially described by Siegel et al. (35), and also
analyzed by Stanne et al. (54). Convergent SSRs contain putative Pol Il termination sites, and divergent SSRs contain putative Pol Il promoters. Genes are
indicated with black boxes, with arrows showing the direction of transcription. Genomic regions analyzed by qPCR are indicated with letters. Primer pairs a, f,
and | are located approximately in the middle of the polycistronic transcription units. B, distribution of the TbISWI partners at different Pol Il SSRs. ChIP was
performed using an anti-HA antibody on either WT cells or cells containing an HA epitope-tagged ISWI, HA-NLP, or HA-FYRP. An anti-RCCP antibody was used
toimmunoprecipitate RCCP and is compared with ChIP performed with rabbit preimmune (P/) serum. The results are expressed as percentage of total input (%
IP), followed by subtraction of the no antibody control. Results are shown as the average of three independent experiments, with error bars showing the S.D.
with the exception of some of the ISWI results because these confirm previously published data (54).

ized and is found in an assortment of chromatin-associated
proteins (68). FYRC domains are typically found in association
with protein modules that recognize histone modifications
(79). FYRC motifs have been identified in the Drosophila tritho-
rax protein, involved in the epigenetic regulation of gene
expression during fly development, and X chromosome-inter-
acting proteins (67).

One possibility that could explain our data is thatin 7. brucei,
FYRP is the most prone to disassociate from the TbIC ISWI
complex compared with the other three subunits. Although we
repeatedly identified FYRP by mass spectrometry using TAP
affinity purification with either ISWT or NLP as bait, the score
was consistently the lowest of the four TbIC components. In
addition, FYRP was not identified in the TbIC complex using
native gel analysis. However, co-IP experiments showed clear
interaction of FYRP with every other TbIC subunit (TbISWI,
NLP, and RCCP). In addition, ChIP experiments showed a
trend for localization of FYRP with other TbIC members on
similar regions of genomic DNA. Similarly, knockdown of
FYRP also led to comparable derepression of silent VSG ESs as
observed after knockdown of the other TbIC subunits. Our data
therefore indicate that FYRP could have a weak or transient
interaction with other complex members, making it prone to
disassociation during protein affinity purification.

Is there indeed only one ISWI complex in 7. brucei? Both the
TbISWI and NLP affinity purification experiments identified
each other as well as the RCCP and FYRP subunits. In addition,
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as mentioned above, co-IP experiments in both life cycle stages
show that all four components interact with each other, and
ChIP experiments indicate that all four proteins associate with
similar regions of genomic DNA. Therefore, all of the available
evidence, using a variety of different experimental approaches,
would argue that a single predominant TbISWI complex is
present in the early branching eukaryote T. brucei. As expected
for subunits participating in the same complex, knockdown of
each of these TbIC subunits leads to VSG ES derepression.
However, these experiments do not rule out the presence of
minor TbISWI complexes containing a subset of the subunits.

Chromatin remodelers, including ISWI complexes, are
extremely difficult to analyze using ChIP (80). This may be
indicative of the transient nature of the interactions between
these remodeling complexes and specific DNA sequences as
they move along the genome changing nucleosome spacing
(81). Despite these technical hurdles, colocalization of ISWI
with different interacting subunits using ChIP can indicate the
presence of discrete functional ISWI complexes at different
genomic locations (80). Previous ChIP analyses of TbISWI have
argued that there is a possible enrichment of TbISW1I at the Pol
II SSRs, which contain transcriptional boundaries, including
Pol II promoters and terminators (35, 54). This is comparable
with what has been found in other organisms, including
S. cerevisiae.

In S. cerevisiae, ISWTI is important for regulation of Pol II
transcription, and ISWI variants are found both within Pol II

SASBMB

VOLUME 290-NUMBER 45-NOVEMBER 6, 2015

GTOZ ‘YT JequanoN uo 1senb Aq /610 og[-mmmy//:dny wody papeojumoq


http://www.jbc.org/

gene bodies and at both promoters and terminators. The Iswl
variant has different functions, depending on which Ioc sub-
units it is partnered up with (14, 17). Iswl in complex with Ioc3
forms the Iswla complex, which represses initiation of tran-
scription at Pol II promoters (15). In contrast, Iswl partnered
up with the Ioc2 and Ioc3 subunits forms the Iswlb complex,
which either acts within Pol II coding regions to control elon-
gation of transcription or alternatively facilitates transcription
termination (15). The Isw2 ISWI variant is particularly
enriched at the nucleosome-depleted region around Pol II pro-
moters, where it appears to play a role in maintaining a high
density of nucleosomes within the Pol II-transcribed gene bod-
ies (81). This reduces the amount of inappropriate Pol II tran-
scription initiation from gene internal cryptic sites and sup-
presses antisense transcription.

In T. brucei, we found a trend for TbISWI and the NLP,
RCCP, and FYRP subunits binding at both divergent and con-
vergent Pol II strand switch regions; however, these data sup-
porting four proteins being relatively enriched in these regions
were not statistically significant. This relative simplicity of
ISWI complex architecture could be a consequence of the lack
of control of Pol II expression in 7. brucei at the level of either
transcription initiation or elongation (82).

In most eukaryotes, Pol I exclusively transcribes the rDNA
arrays, of which typically about half are transcriptionally silent
(83). ISWI variants also play a role in this regulation of Pol I,
which in mammals is mediated by the ISWI-containing NoRC
complex consisting of ISWI (SNF2H) in complex with the TIP5
subunit (84). This NoRC complex mediates the formation of
heterochromatin both at the silent rDNA repeats and at the
centromeres (31). In T. brucei, all of the TbIC components are
located at the rDNA, particularly in the non-transcribed spac-
ers. This is also the case at the Pol I-transcribed procyclin loci
and the ESs (85), although no particular enrichment was
observed at either active or silent ESs (54). Because knockdown
of all of the ThIC components leads to derepression of silent
ESs, it is clear that ISWI plays a role in regulation of Pol I tran-
scription in 7. brucei.

All of our experimental evidence therefore points to a single
ISWI-containing complex in T. brucei, which is a very early
branching eukaryote, although we cannot rule out the presence
of relatively minor subcomplexes. The apparent presence of all
TbIC components at a range of different genomic loci, includ-
ing Pol II SSRs, as well as at different Pol I loci argues that the
predominant TbIC complex could be multifunctional. Chro-
matin remodeling enzymes appear to have arisen soon after the
origin of the eukaryotic lineage, and as eukaryotic genomes
expanded in size and complexity, there was an increasing need
for a larger array of specialized chromatin remodeling factors
(1). In common with other parasites, T. brucei appears to have a
relatively reduced set of these chromatin remodelers, coupled
with a greatly reduced set of Pol II transcription factors (1, 86).
Possibly, as T. brucei evolved, large amounts of gene loss
occurred as a consequence of the lack of the need for intricate
control systems as the organism relied on constitutive tran-
scription by Pol II. We show that the major T. brucei TbIC
complex contains novel subunits compared with other non kin-
etoplastid eukaryotes.
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The challenge for us now is to understand the role of these
unique chromatin remodelers in the maintenance of genome
architecture in these ancient eukaryotes. In addition, hopefully,
increased knowledge of the role that these divergent chromatin
remodelers play in transcriptional control, including that of the
VSG expression sites, will allow us to disrupt this process,
thereby leading to new forms of antiparasitic therapies.
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